Processing math: 100%
Subalgebra A201A14
6 out of 15
Computations done by the calculator project.

Subalgebra type: A201 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: A14

Elements Cartan subalgebra scaled to act by two by components: A201: (4, 6, 6, 4): 40
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g3+g4
Positive simple generators: 4g4+6g3+6g2+4g1
Cartan symmetric matrix: (1/10)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (40)
Decomposition of ambient Lie algebra: V8ω1V6ω1V4ω1V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra.g4+3/2g3+3/2g2+g1g7+3/2g6+g5g9+g8g10
weight2ω14ω16ω18ω1
Isotypic module decomposition over primal subalgebra (total 4 isotypic components).
Isotypical components + highest weightV2ω1 → (2)V4ω1 → (4)V6ω1 → (6)V8ω1 → (8)
Module label W1W2W3W4
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g43/2g33/2g2g1
h4+3/2h3+3/2h2+h1
1/2g1+1/2g2+1/2g3+1/2g4
g7+3/2g6+g5
g4+1/2g31/2g2g1
h41/2h3+1/2h2+h1
3/2g1+1/2g21/2g33/2g4
g5+g6+g7
g9+g8
g7g5
g4g3g2+g1
h4+h3+h2h1
3g1+2g2+2g33g4
5g5+5g7
5g85g9
g10
g9g8
g72g6+g5
g43g3+3g2g1
h4+3h33h2+h1
5g110g2+10g35g4
15g520g6+15g7
35g835g9
70g10
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1
Isotypic characterM2ω1M0M2ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1

Semisimple subalgebra: W_{1}
Centralizer extension: 0


Made total 21786 arithmetic operations while solving the Serre relations polynomial system.